
——. ——. —

.

.

REPORT 1125

DYNhlICS OF MECHANICAL FEEDBACK-TYPE HYDRAULIC SERVOMOTORS
UNDER INERTIA LOADS ‘

By HAROLDGOLD,EDWABDW. Oreo, and VICTOFtL. RANSOM

SUMMARY

An analyti of the dynamia.sof m.qhaniml feedbaek-type
hydraulic wm?notors una%rinertiahuh h devebpedand exper-
imental wrijiktion is prcxe&d. This analyw%,which ix de-
velopedin terrm of twoph@cal parametis, yields direct expres-
sions for the following dynamic responw: (1) the tmnsient
respon8e to a step input and the maximum qdinder premure
during th tratint and (2) the variu$ionof ampltiti at&nua-
tion and phuse 8hijtwith tifieguency of a sinw+mida~yrmying
input. Tlw validiiy of tlw analyti b demonstratedby memm
oj recorded tranai.entand frequency respomw oh!aind on ihoo
8ervomotir8. The8edata,whichwere ob!aimd overa wide range
of in-wtialoads,input magnitwie8,and prewure di$erentiak, are
pre8entedalong with the analytieui’lyd.5terminedraporwx. In
auc4z8e8tkeak14zM re.qmmkxare in closeagreem& with the
mw-ured reqmnses. 17wrela@n8 prqsenid are readily appli-
cable to % des-ignas well CMto the analymkof hydraulic 8ervo-
m0t0r8.

INTRODUCMON

Tlm servomotor dealt with in this paper is a potver-
nmplifying, positioning device of the type used in such applica-
tions as control-valve positioners,gun-turret positioners, flight
controls, and power-steering devices. The hydraulic servo-
motor m a device has been lmown for approximately 100
years. Its application to high-speed machinery, however,
appears to be relatively recent. There is, consequently, very
little published literature on the dynamics of this servomotor
in spite of its long history. Nevertheless, when properly de-
signed, the hydraulic servomotor is particularly suited for
high-speed service because of the extremely high force-mass
ratios that can be obtained and because the devioe inherently
is heady damped.

A diilerential equation for the response to a step input of
the hydraulic servomotor with meohanicrilfeedback under an
inertia load is available in the literature (ref. 1). This equa-
tion (a fo.n of which is derived in the present paper] can be
considered to be exact over a fairly representative portion of
the responw but is not valid in the early part of the transient.
I?urthermore, under a heavy inertia load the fluid on the
driving side of the piston may cavitate, in which ease the
response cannot be desoribed by a single equation. It is
therefore neceswuy to treat”the response of the smvomotor
in distinct phases.

The basic technique employed in this paper in the analysis
of the servomotor is the approximation by one or more linear
systems whose individual responses match the behavior of
the actual system in defhable phases of the response. The
several linear systems are then correlated by relating each to
the same phyzioal parameters of the system. In this iR-
stancej two parameters are all that are required for the cor-
relations. One of these parameters is a direct function of
the dimensions of the servomotor and the hydraulic pressure
drop across the motor. The second parameter is a function
of the magnitude of the disturbance and the mass of the load.
By means of this method, analytiosl expressionsare obtained
for the following dynamic responses of the servomotor: (I)
the transient response to a step input and the maximum
cylinder pressure during the transient and (2) the variation
of amplitude attenuation and phase shift with the frequency
of a eirmsoidallyvarying input.

The validity of the analysis is demonstrated by means of
recorded transient and frequency responses that were ob-
tained on both a straightAine and a rotary type of sw O-

motor. These data, which were obtained over a wide range
of inertia loads, input magnitude, and pressure differential,
are presented along with the analytically determined re-
sponses. The investigation was conducted at the NACA
Lewis laborato~.

SYMBOLS

The following symbols me used in this analysis:

A ratio of output amplitude at a given frequency to
output amplitude at zero frequency

A, . piston area, sq in.
A, open area of pilot valve (inlet or discharge side),

Sq in.
a- constant
b constant

c dhpensionril constant in fluid-flow equation

(
95.1* based on spec~c gravi@ of 0.851

seqm

and flo’w coeflioient of 0.59
)

constant
b Oonstant
E’ inertia index (transient response)
E’ inertia index (fiequancy response)
F,FI,FS functions “

:801MSMCSNAOATN2?67,“DynamfmOfMwbmfmlFwdkk-TgIE HgdmnffoSorvomotoraUnderInertlELc=@” by EfmuIdGofc EdwardW. Otto,ondVfc&rL. Ranmm,19.52.
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low-frequency-band break frequency, cps
‘tigh-frequency-band break frequency, cp;
cross-over frequency, cps .
constant
width of VfUle, in.

J=
polar moment of inertia, (lb-in.) (seca)/radians
inner vane radius of rotm-y servomotor, in.
outer vanOradius of rotary servomotor, in.
load mass, (lb) (sec~/li.
upstream cylinder pr-ure, Ib/sq in. abs
downstream cylinder pressure, lb/sq in. abs
drain prewne, lb/sq in. abs
supply pressure, lb/sq in. abs
pressure drop across piston, lb[sq in-
valve pressure drop, lb/sq in.
dkcharge-valve pressure drop, lb/sq in.
inlet+valve pressure drop, lb/sq in. .
shaft torque, lb-in.
flow through valve, cu in./sec
ratio of valve travel to piston travel at fixed input,

h.fii.
ratio of valve travel to ‘vane shaft rotation at

fixed input, in.]radians
magnitude of step (measured at output), in.
amplitude of output sine wave at zero frequency,

in. .
no-load time constant, sec
time horn st&t of transient, sec
value of t at inflection point of transient, sec
value of tat phase limits in transient, sec
width of valve port (measured perpendicular to

line of valve travel), in.
instantaneous position of oujput measured from

position at t=O, in.
value of z at inflection point of transient response,

in.
value of z at phase limitlsin transient, in.
value of z at point of maximum declaration in

transient response, in.
instantaneous position of output measured from

position at t=O, radians
magnitude of step (measured at output), radians
amplitude of output sine wave at zero frequency,

radians
phase shift, radians
angular frequency, radiansjsec
low&equency-band break frequency, radiansjsec
high-frequency-band break frequency, radians/see
cro&-over frequency, radians/see

DEFINITIONS AND INITIAL ASSUMPTIONS

Straight-line servomotor.-The elements of the straighti
line hydraulic servomotor are shown schematically in figure
1(a). In the neutral position, the spool member of the pilot
valve closes the passages to the piston. When the spool
member is displaced fiwm the neutral position by movement
of the input lever at point A, the flow of fluid through the

I
Error

t -,.-+lput
A Ieve r

1!Ulpld shaft

u
(a)

~ Errar +

(a) StraighMne servomotor.
(b) Rotaryservomotor.

FIGUEEI.-Schematic drawinga of two types of hydraulio servomotor
with mechanical feedbaak.

pilot valve causes the piston to move in the direction whioh
returns the spool to the neutral position. It follows from
the geometry of the linkage that’ for every position of the
linkage point A there is a corraponding equilibrium position
of the piston. The description of several other forms of
pilot vaking and feedback linkage is available in tho
literature.

Rotary servomotor,-The rotary servomotor is shown
schematically in figure 1(b). Rotation of the pilot VUIVO
with respect to the output “shaftopens a pressure passage to
one side of the vane and a drain passage to the opposito sido
of the vane. The vane is thereby oaused to rctato in the
same direction as the pilot valve. In the neutral position
of the valve the passa&s to either side of the vane are olosad,

.
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Initial assumptions .—The analysis which follows is
developed with the following initial assumptions:

(1) The area of opening of the pilot vklve varies linearly
with the motion of the load.

(2) At all positions of the pilot valve the inlet and dis-
charge openings me equal.

(3) At fixed input, the ratio of pilot-valve travel to piston
travel is constant.

(4) The supply and drain pressures are constant.
(5) Structure and linkage are rigid.
(6) The compressibility and mass of the hydraulic fluid

me negligible,
(7) hlechanical friction forces we negligible.
(8) Leakage is negligible.
(9) Fluid friction lows in the motor passagesarenegligible.

TRANSIENT RESPONSE TO A STEP INPUT

The transient response is analyzed for the no-load case se
well as for the inertia-load case. The amilysisof the response
at no load yields an important parameter used in the analysis
of the response under an inertia load.

NO-LOADR=PONSE

Basio character of response.—Under the conditions of
zero load on the output shaft and negligible piston and shaft
mass, the pressure drop across the piston will be zero during
the transient as well as in steady state. h+ the transient

.state, therefore, the fluid flow through the cyhnder is essen-
tially unobstructed. On the basis of the initial assumptions
and on the further assumption of constant flow coefficient
of the pilot valve, the flow of fluid is then proportional to the
valve opening and hence proportional to the position “error
of the piston. The velocity of the piston is therefore pro-
portional to the error. TIIis relation between the piston
velocity and the error may be exprwed by the following
equation:

5%=(S–+ (1)

Tho solution of equation (1) is: ,

(2)

In the no-load case the transient response is therefore
defined by the time constant T.

Determination of time oonstant from servomotor dimen-
sions (straight-line servomotor) .—In the no-load case the
sum of the pressure drops wxoss the inlet and discharge ports
is equal to the pressure diilerence across the servomotor.
I?rom the initial assumptions it therefore follows that the
pressure drops across the two valves are the same and hence
equal to half the pressure difference across the servomotcm

~p =P,–P.
Q 2 (3)

If the flow coefficient of the pilot valve ii considered con-
stant, the rate of fluid flow into the cylinder is given by the

relation

rP.–P.
q= CA, ~

LOADS 375

(4)

The area of opening of the valves is proportional to the
error and may be written

A,= (S–Z)RW (5)

The velocity of the piston is determined by the flow rate
through the vahw and is ralated by the following wqms.sion:

APi=q ~ (6)

Equations (4), (5), and (6) may be combined to form the
differential equation of the response

‘,’=(CRWF=%S-’)-(7)

Equation (7) is of the same form as equation (l), from
which it follows that

(8)

Determination of time oonstant from motor dimensions
(rotaq’ servomotor).-The area of opening of the valves as
a function of the error may be written

Ag=(O–a)rW (9)

The angular velocity of the output shaft maybe “related
to the flow rate through the valves by the following expres-
sion:

(lo)

Equations (4), (9), and (10) may be combined to form the
differential equation of the response

( J=)(’-a)“ ’11); (-w–ml ~= (3’W

From equation (11) the time constant is

h (L2–L?)
‘=@Qrw-Jm

(12)

. Expei-imentalresponses.—A typical response of a hydraulic
servomotor to a step input at no load is presented in figure 2.
The servomotor used in this run is of the rotary type. The
data are plotted as the logarithm of the charactefitic term

()
-1

1–; against time. In a response described by equation

()(2) (rewritten in terms of a and o), the term log 1–~ “

vark linearly with time. The data as show-nfall es&nti~y
along a straight line and are in close agreement with the
calculated response based on the calculated time constant.
The calculated response is based on the value of time con-
stant computed by means of equation (12). The dimensions
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FmunE 2.—Responw of hydraulio eervomotor to step input under
negligible inertia load. Rotary eervomotor;torque-inertiiratio,
3,500,000radiansper second per second; eupplypremn-e,1000
poundspersquareinoh;tdtalshaftdisplacement,20°.

of the servomotor necessary for the application of equation
(12) are given in append&A; also described are the experi-
mental methods used to obtain the data.

In @me 2 the deviation of the data points from the
theoretical straight line is the grwtest in the early part of
the transientwhere the effect of the internal servomotor mass
is greatest. The response in the later part of the transient
is less ailected by the internal mass and is therefore indica-
tive of the theoretical no-load rwponse. The close agree
ment of the points with the theoretical straight line over
the entire transient can be attributed to the relatively small
internal mass of this servomotor. The ratio of static torque
to the moment of inertia of the motor in this case was
3,600,000 radians per second per second.

TJL4NSIBNTWQ3PONSEUNDERINERTIALOAD

General characteristics of response.—Under the condition
of an inertia load on the output shaft, the pressure drop
across the piston will be proportional to the acceleration
of the load. The general nature of the variatio~ of the,
pre.wuredrop across the piston along with the corresponding
output shaft response is shown in figure 3.. Jn the &ure
the following relations exist among the cylinder pressures
PI and P, and the pressure drops across the piston APP,
bheinlet valve AP,,~,and the discharge valve AP8,x

In the steady state, the pressure drop across the piston is
zero. The cylinder pressures are equal and their magnitude

s
=-
*- “-- Moxlmum deceleration
_- lnf&c.on

----
g

~
~
n

.

,

t

Accekratkxl

it

Oec;49@an —
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l?mmm 3.—C!haraaterietiopreeeum variations during transient response
of hydraulio eervomotor with mechanloal feedbaok. Stop input and
inertia load (oylinder premures not limited).

. .

is a function of the leakage areas around the valves. If the
leakage areas mound the valvca are equal, the cylinder
prwures will be equal to (P,nPJ/2. This condition is
assumedin figure 3.

In response to a step input, PI immediately rises to tho
supply pressure P,, &d Pi immediately drops to the dmin
pr=ure Pd. The accelerating pressure differential is then
initially (P.—Pal). A the piston accelerate, the flow of
fluid through the valve ports increases and at the same
time the valve-port ‘areasdecrease. This action causes Pi to
decrease and P, to increase. The two curves (P,=F, (t)
and Pz=Fz(t)) are mirror images and therefore intmsoct
at the,value of (P,— P.J/2. At the intersection, the pressure
differential across the piston is zero and the transient is
therefore at the inflection point. Beyond the point of
intersection of the two pre9sure curves the momentum of
the load causes PI to continue to decreaseand Pg to continue
to increase, which action results in a ~ecelerating pressure
dillerential acrosa the piston. The deceleration causes a
reduction in tie rate of fluid flow through the valves and a
consequent reduction in the rate of change of Pi and Pa.
The pressurw P* and PI therefore pasa through maximum
and minimum values, respectively. The deceleration con-
thmes -until the error is reduced to zero. The magnitude
of the maxinum and minimum values of the cylinder pres-
sures during the deceleration phase is a function of the value
of error and of momentum at the inflection point. Based

.
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on these factors alone, “the value of the mtium and mini-
mum is iinite but not limited, The pressure PI, however,
is physically limited at absolute zero. The effect of PI
limited at absolute zero is treated in a later section. In
the analysis that follows, the minimum value, of PI is not

- limited,
In the transient response-treated in this section, P, and

P! vary as mirror images throughout the entire transient.
In this case

APns= AP,4

The sum of the valve preswre drops maybe writte~

APv,i+ APe.4=2A-Pv

The pressuredrop across the piston may be writtm

APP=P*–P.–2AP, . (13)

The pressure drop across the piston is related to the ac-
cohwkion by the following expression:

From equations (13) and (14)

With the flow coefficient of the pilot valve considered
stant, the equation of flow through the valve ports is

‘P’=[CRWJF=%WZ)

,

(14)

(15)

cOn-

(16)

Equation (16) cannot be integrated to z except by numerical
or graphical methods. Some solutions of equation (16)
are given in reference 1.

Under an inertia load the piston ~ accelerated from zero
velocity. There is consequently an initial period in the
response during which the flow through the valve ports is
Iarnizmr. As a result of this, the flow coefficient of the pilot
valve is not constant but is subject to wide variation. The
net effect of the variation in flow coefficient is that of a
marked reduction, which results in a S1OWWinitial accelera-
tion rate than is indi.~,~d by equation (16). This effect is
apparent in the comparison between measured responses
and responses calculated by a form of equation (16) shown
in reference 1.

At the conclusion of the transient the pidon veloci~
again approaches zero, but in this part of the transient the
valve areas also approach zero so that high fluid velocity is
maintained in the valve ports. The flow coef6cient may
therefore be considered constant except in the initial accel-
eration phase. In the no-load case the assumption of
constant-flow coefficient is valid because the piston veloci@
is a maximum at the start of the transient.

In spite of the complex nature of the response there axe
basically only two phases in the transient, the acceleration
phase and the deceleration phase. This conclusion, partic-
ularly with reference to a continuous deceleration phase

3z100~5&z5 .

without overshoat or oscillation, is based on the assump-
tion of rigid oil and structure and zero leakage. l?ibwe 4
shows an oscillographic record of the response of a servo-
motcr to a step input under a relatively hem-y inertia load.
The characteristic acceleration phase and dead-beat deceler-
ation phase are quite clearly demonstrated.

FKWJBE L—Oscillogmphic. record of response to step input of
hydraulia servomotor udder an inertii load.

Linear system for approximation of aooeleration phase of
transient response.—It is indicated by the measured
responses of hydraulic servomotors under inertia loads that
the acceleration phase may be approximated by a linear
second-order system. The general form of a second-order
d.iilerential equation with constant coefficients may be
written

a;+ b?+x=c (17)

The constants a, b,“and c are now evaluated to match tie
physical-system.

The equilibrium value of z in the physical system h~
been deiined by the symbol S; hence,

At no load the servomotor responds as a first-order sya-
tern. Equation (17) should therefore reduce to equation (1)
for the inertialesacase. Therefore,

b=T

The constant a & be determined hm the initial condi-
tions: . I

The substitution of these values in equation (17) yields .

Am——
a=(P*–P&4p (18)
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The di.tlerentialequation of the lineax system that approx-
imates the acceleration phase is then .

,

(19)

Evaluation of coefficients for rotary servomotors.-The
stalled torque of the rotary servomotor is given by the follow-
ing expresion:

/--J=(R-R) (y–Ll? ~ (20)

Hence, when
t=o

JP,-PJ (L&-z-f) h
2J

The term Ap/M, which occurs in the case qf the straight-
line servomotor, is replaced in the ewe of the rotary s,ervo-
motor by the term li(L+L?)/2J. RepIacing terms in
equation (18) yields

2Je
a=i (Lz?-Lq (P,–Pd)

(21)

The differential equation of the linear system that approx-
imates the acceleration phase in the case of the rotary servo-
motor is

[

2J8
h (L?–L~ (P.–PJ 1G+ Tci+a=6 (22)

Linear system for approximation of deceleration phase of
transient response.—In the deceleration phase of the
transient the flow through the valve ports is turbulent; con-
sequently the flow coefbient remains constant and equation
(16) may be directly applied.

Rearranging terms of equation (16) and dividing both
sides by the term ~~ yield

Substituting equation (8) in equation (23) yields

(24)

At the start of the deceleration phase the value of 2 is
zero and consequently the rightihand side of equation (24)
equals unity. As the transient continues, the value of 2
increases to a mqinmm value and then returns to zero.
For small inertia loads, the peak deceleration pressure d.iihr-
ence across the piston will not exceed the value of the term
(P,–P.) (see fig. 3). Ih a transient ih which the maximum
decelerating pressure difference across the piston equals the
difference (P,–Pd, the right-hand side of equation (24) has
a mtium value of @ In even extremely severe tran-
sients the maximum value of this term will not exceed 2.
Eigh values of the maximum deceleration are associated with
short durations. The decelerating pressure differential will

therefore have a small effect on the integrated solutions. In
treating the deceleration phase of the position responso of
the servomotor, therefore, the variation in pressure drop
across the valve ports may be neglected. Equation (24) may
therefore be xeduced to

()‘235=1 (26)

Equation (25) is the same as equation (l). In this linear-
ization, therefore, the deceleration phase of the transient is
approximated by an exponential decay.

Application of eqnations,-Equations (19) and (22),
which are used in this analysis to approximate the accelera-
tion phase of the transient, are linear second+rder differential
equations and may be integrated in terms of several parame-
ters. The no-load time constant T will be ‘employed as a
parameter ii the integrated solution because this quantity is
a direct function of the physical dimensions of the s&vo-
motor. The second parameter that will be used is the
reciprocal of the damping ratio. This quantity is herein
designated the inertia index 17. The new term is employed
in this,paperbecause the quantity is law applied to equations
in which the term ‘(damping ratio” would have no meaning,

Equation (19) expressed in terms of the parameters T qnd
E maybe written

.

(26)

The value of E may be obtained directly from the dimen-
sions of the servomotor, the load mass, and the initial mror,
Equating like coefficients in equations (19) and (26) gives

E==
(27)

With the substitution of equation (8) in equation (27) the
general expression for E is obtained:

(28)

With the same procedure followed in the case of the rotary
servomotor, the inertia index is

4Cr W~J .
‘=[h (L,’–@)]3’2 ,

The integrated forms of equation (26) are as follows:
When .E=l. ,

~=1–e -(;) [,+(;),j

V?hen E<l,

(29)

(30)

,( 4ia-(HT-)t-;=l–; 1+

(
ll_l

)
g-(z%%% -0 (31)

3 m
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transient response of hydraulio servomotom with mechanical feedbaok.

Equations (30), (31), and (32) apply specifically to the
acceleration phase of the transient. In this analysis the
deceleration phase is approximated by an exponential decay
as deiined by equation (25). Thare is, however, very little

difference between the values of ~ as defied by equation (3o)

or equation (31) beyond the inflection point and as deiined
by the integrated form of equation (25), When l?< 1, the
corresponding equations (30) or (31) may therefore be applied

in evaluating ~=F(t) in the deceleration phase of tho

transient as w~ as the acceleration phase. when ~1, -
equation (32), which appliw to the acceleration phase, deviates
markedly from a first-order response in the deceleration
phase. Equation (32) may therefore be applied only up to
the inflection point, The time at wl&h the inflection point
occurs aa evaluated horn equation (32) is

““G=(tan-’-@T=l) (33)

Equation (32) is therefore solved for values of ~ for values

of tbetween zero and G.
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Values of ~ for values of t>h are obtained by integrating

equation (25) with the initial conditions

t=tl

X=X1

which yield

‘-,-(+-(%?~– (34)

The relations defhxl in this section tie summarized in
figure 5 along with the expressions for T and E.

Experimental responses.—As derived in this analysis,
the transient response of the servomotor is characterized
dynamically by an acceleration phase that is approximately
described by a linear second+rder ditkrential equation and
a deceleration phase that is approximately desmibed by a
linear fit-order di.ilerential equation. T* coefficients of
the equations for both phases are detebned by the two
p~dars T and E. The parameter T is a function of the
motor dimensions and the @wsure difference across the
motor. ” The parameter E is a function of the motor dimen-
sions, the load mass (or moment of inertia), and the magnit-
ude of the input step. Figure 6 shows the characteristic
agreement between calculated and measured responses in
a serica of runs in which the factors that detetie the
parameters T and E have been varied. The data shown
were obtained on a rotary servomotor. The servomotor
and the experimental procedure are desmibed in appendix A.

In figure 6(a) is shown the agree.nuantbetween calculated
and measured responses at various pressure differences
across the motor. This set of runs was made at a tied step
magnitude and a &cd load moment of inertia. l?igure 6(b)
shows the agreement obtained in a seriesof runs in which the
magnitude of the step was varied while pre.wre difference
and load moment of inertia were held constant. Figure
6(c) shows the agreement obtained in a series of runs made
at constant pressure d.iiferenceand step magnitude in whi@
the load moment of inertia was varied.

As can be seen in iigure 6, the calculated responses have
provided h close approximation of the actual responses over
a very wide range of conditions. It may be of particular
interest to note that the effect of the magnitude of the input
step predicted by the approximating equations is evident in

“. the measured responses -

DETERMINATIONOF PEAK CYLINDERPEHUEE DUIUNGTRANSIENT
MBPONSEUNDERANINERTIALOAD

It has been indicated in the previous section that the
pressure difference amoss the piston during the deceleration
phase does not cause the motor response to deviate signifi-
cantly fkom a response characterized by an exponential
decay. The linear equation (eq. (25)) that is therefore
adequate to des,@ibe the deceleration phase of the position
response neglects the variation in deceleration rate and
cannot be used to obtain an indication of the peak cylinder
pressure during the transient. In the analysis that follows

●
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(a) Effeot of pnxmme differential. Stap input, 30°; moment of inertia
of load, 12.35 pound inohes per seoond per seoond.

(b) Effeot of magnitude of step. Moment of inertia of load, 12.36
pound inches per second per seoond; prewm difkumtinl,260
pounds per square inoh.

(o) Effeet of load inertia. Stepinput,20°i Pressure dwemntial, 250
pounds per square inch.

FIQrmE 6.—ResponEes of hydraulio servomotor to step input undbr
inertii load. Rotary sorvornotor.

.

a method will be developed by which an equation similar to
equation (16) can be utilized by purely analytical means to
determine the peak cylindar pressure that occurs in the
deceleration phase.

lh.itial assumptions,-Jn the construction of high-speed,
high-output hydraulic servomotors, it is usual to employ
high ~pply-preswre diiference9 across the motor. In such
instances, the drain pressure Pd is, r~ative to the suPPIY
pressure P,, close to absolute zero. Under this condition, Q
severe deceleration, resulting from a heavy inertia load,
which causes the downstream pressure Pj to rise above P,,
will drive the upstream presmre P, to its limit at essentially
absolute zero. In the analyz& that follows this condition is
assumed to hold. The characteristic pressure variation
during such a transient is presented in figure 7.

& shown in figure 7, the pressure transient is divided into
three phases. In phases I and HI the two pressure curves
(P,= F,(t) and P,=Fz(t)) are mirro~ images. In pham II,
PI is considered constant at absolute zero. The calculation
of the maximum value of Pz in phaae 11 is based on the deter-
mination of the maximum value of deceleration. In order
to evaluate the maximum deceleration, it will be necessary
to determine the output position and velocity at the begin-
ning of phase II. The symbols to be used in deiining the
initial conditions for ea&hof the three phaaes are shown on
the upper curve of figure 7.

Determination of initial conditions for phase IL—UP to
the inflection point, phase I is identical with the acceleration
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I
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~mum 7.—Characteristio preesure variations during tranaient respomw
of hydraulio eervomotor with mechanical feedback. step -tiput
and inertia load (upetream cylinder pressure limited at absolute
zero) .

phase previously treated. It is an assumption that the
transients that result in high decelerating pressures will be
of the type in which the inertia index Eis large; therefore, only
the solution to equation (26) for -l need be considered.
Equation (32) therefore describes the function z=l’(t) up
to the inflection point. As deiined in figure 7, phase I
extends beyond the inflection point. The coordinates of
the junction of phasea I and II are

t=tj

At this point; by definition, “

. P2=P*

AP,,,= AP,,~=P,

At any point in the transient the piston velocity
to the flow through the valves by equation (16).

is related
Thus, at

the junction of phases I and II “

~=CR W
~p @w-x2)

From equation (8) the following relation

(35)

may be written:

(36)

Substitut@g equation (36) in equation (35) yields

(37)

From equation (37) it is seen that the velocity at the
junction of phases I and II is the velocity corresponding to
th6 inertiahss &e multiplied by -@ At the inflection
point the veloci@ correspond exactly to the inertialeascase.
Thus,

~l=s–xl
T

Based on the consideration that

(S–+>(IS–XJ

the following approximation is made:

(s–z,) SJz (s–+%)
Hence,

From this the conclusion is draw-nthat the piston moves
from the inflection point to G with substfmtially me wilocity
at the inflection point.

The expression for the term t, can be found by d.i&ren-
tiating equation (32) and setting t=tl, where tl ~ given by
equation (33). This yields

(38

the value of&The term % is determined by sub+ituting
(as determined by eq. (38) in eq. (37)).

Differential equation for phase II of response.—As shown
in figure 7, the following relations exist in

P,=o

APP= — P2

AP,, d=P2

The pressure drop across the piston
acceleration by the following expr~ion:

AP,=~i+
9

plias.eIf:

is ralated to the
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From the condition speciiled above,

The equation of flow through the valve ports is

Squaring and rearrangg terms give

(diia’f)(lw’=” (39)

From equation (2S),

28_ A,’
‘ P–G E W’M

Hence, equation (39) may be written in t6rms of the
inertia index

&
(40)

Determination of maximum value of dec.eleration,-DifTer-
entiating equation (40) and setting 2=0 yield

Z(s—z)+(zy=o (41)

Eliminating 5 between equation (40) and equation (41) gives

g &–(*)’=o

from which

~=l–g (42)

Substituting equation (42) in equation (40) yields

E@)’~m== ——
2s

(43)

The value of 5 at z=% is found by btegrating equation
(4o). This integratiori is shown in appendix B. By iusert-
ing this value of 2 in equation (43), the value of 5m@is ob-

. tained. Basedon the consideration that PI equals zero, the
relation between the mtium downstream cylinder pres-
sure and the msximum value of the deceleration is

(44)

It is further shown in appendix B that the ratio P%m~P.
can be expresqd as a function solely of the inertia index.
This relation is given below

P%__.lPeWm
P* 14.77

(45)

-where

It is shown in appendix B that equation (46) has real vmluw
for all values of *2.38.

Comparison of experimental and analytical values of
peak oylinder pressure.-Equation (45) is plotted in figure
8 for values QfE horn 2.38 to 6.5. Also shown in the figure
are mpximentd values obtained on the rotary servomotor
described in appendix A. The experimental technique umd
to obtain the data is also described in appendix A. It can
be noted that the experimental values are slightly lower thcm
the analytical curve at low values of 1?and are in close rgree-
ment with the curve at higher valuea of E. The value of E
equal to 5.7, which is the highest experimental value shown,
waa the highest value that was practicably obtainable with
the twt equipment. In general, valuea of E in excess of 6
represent very heavy inertia loads and laxge step magnitudw.

Effect of high decelerating oylinder pressure on tranaient
response.—In the derivation of the equations that describe

. Inertia index, E

FIGUEB8.-Ratio of peak transient oylinder pressure to supply prassure
as function of inetila index. Hydraulia servomotor with moohani-
asl feedbaak.
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the transient response of the mrvomotor, it was shown that
the deceleration phase of the trknsient response could be
approximated by an exponential decay, in which case the
variations in the cylinder pressures are neglected. This
method of approximation is outlined in figure 5. For
transients in which the upstream cylinder prcsaure is driven
to absolute zero, the relations that have been derived for the
detmnination of the peak decelerating cylinder pressure can
be used for a more precise determination of the transient
responm than is afforded by the method of iigure 5. The
application of these relations to the transient response is
presented in appendix B and is outlined in figure. 9. A
comparison of the method of @e .5 and the method of
figure 9 with an experimental response is shown in figure
10. The agreement between the measured response and the
response calculated by the method of figure 9 is extremely
close, The value of the inertia index in this response was
4,49; hence, from figure 8, the ratio P~,-/P, eqmds 1.75.
Even with this high decelerating pressure the method of
figure 5 provides a fair approximation of the response. The
calculations involved in the application .of the method
outlined in figure 9 aremany times longer than those required
with the method outlined in figure 5. For this reason the
method of figure 9 should be applied only when the need for
increased accuracy jtitifk the longer calculation.

1.
x~

Xd

X2L

xj/

—Phos8 I II III

mum decelemtion

.-

point--

0 t,t* t~
Time, t, .sec

FIC+URn9.—Ansdytioal relations for approximating tranaient response of
hydrnulic servomotor with meohanioal feedbaok Stap input and
inertia load (upstream aylinder pressure limited at abmlute zero).

RESPONSE TO A SINUSOIDAL INPUT ‘

The analysis of the frequency response at no load yields an
important parameter used in the anal@s of the response
under an inertia load. For this reaaon, both the no-load and
the inertia-load cases are treated.

NO-LOAD~ZSPONSE

Basio oharaoter of response .—The basic character of the
zero mass response is defined by the linear proportionality

Lo-y-—- - &

/~’ ---

.8
+ <
_-

.6
~ ~

/

1 Measured response
3

0
a~

.
— Method of figure 9
––– Method of figure 5

z
.2

&
o .1 .2 3 .4 .5 .6

Time, t, sec

FIGUEE10.—Comparkon of method of ilgum.s 5 and 9 with measured
I’e9ponse. Transient response of hydraulio servomotor with
mechanical feedbaok. Rotary eervomotar; step input, 30°; moment
of inertia of load, 41.75 pound inches per ewond per sacond; pressure
different~ 250 pounda per square inoh. Inertia inde.. E, 4.49;
no-load time constant T, 0.0617 second. ,

between the output velocity and the pilot-valve opening (or
position error). - The proportionality constant between the
velocity and the error is the no-load time constant T. For a
@woidally varying input the instantaneous output velocity
is then .

s Cos (rArt)-cc
x=

T
(46)

The solution of equation (46) is

&Aei~~+9J ‘ (47)

Substituting equation (47) and its derivative in equation (46)
give9

(48)

The tam Aei~ is a vector quantity having an amplitude
A and a phase angle p. From equation (48),

(49)

and
~= —~-lTu (50).

For large valuea of u

A~&

Hence, the aaymptote of the response is given by

A=& (51)

The intersection of the asymptotic line and A=l yields the
break frequency aqd orients the asymptote

(52)
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(a) Amplitude attenuation
(b) Phase ehift.

FIQUSE lL-Frequenoy ~onse of hydraulio mrvomotor under
negligible inertia load. Rotary servomotor; torque-inertia ratio,
3,500,000 radians per second per second; supply pressure, 1000
pounda per square inch.

l&perimental responses.—Figure 11 shows the correlation
between the analytical fit-order frequency response and the
measured frequency response of a servomotor at no load.
Th? servomotor used was the rotary motor described in
appendix A. The techniques of instrumentation and.experi-
ment are also described in appendix A. The close agreement
between the calculated response and the measured response
for the wide range of input amplitudes used clmraoterizes
the basic linearity of the r~ponse of the servomotor at no
load. .

R~PONSE UNDER AN INERTIALOAD

It has been shown that under an inertia load the transiant
response of the servomotor is nonlinear. In ‘the transient
response the basic character of the response varied with time.
It is therefore to be expected that in the frequency response
the basic character of tie response will vary with frequency.

low-frequenoy amplitude attenuation.-At low frequencies
the forces that act on the mass of the system are small and
hence the response in this frequency range will be similar to
the no-load response. The attenuation may therefore be
described by equations (49) and (51). In the log-log plot of
amplitude ratio against frequency @g. 12), an asymptote
may then be considered to exist with unity slope and a
break ‘frequency of 1/2’. The break frequency of the low-
frequency asymptote expressed in cycles per second is

},=&T (53)

High-frequency

AERONAUTICS

amplitude attenuation.-At no load the
piston velocity is at all tirm%proportional to the valve open-
ing. Therefore, in the response to a sinusoidal input at no
load the pilot-valve area is zero at the ends of the output
travel (the velocity being zero). Under an inertia load tho
piston ve~o.cityis not proportional to the pilot-valve opening,
and hence m the response to a sinusoidal input the valve mea
is not neceswwily zero at the en~ of the output travel. If
at a given frequency the response of the servomotor is as-
sumed to be essentially sinusoidal, the maximum accelera-
tion can be considered to oicur at the limits of the output
travel qnd hence when the piston velocity is zero. Under
the condition of negligible mass of the hydrnfic fluid, the
pressure difference across the piston at any instant, when the
piston veloci~ is zero and the pilot-valve area is greater than
zero, is the pressure difference across the servomotor. Above
some frequency the system may then be approximated by a
linear system wherein the pressure difference across the pia-
t.on varies sinusoidally with an amplitude of (~s–~d) and
with the &@ency of the input. On the basis of this approx-
imation the acceleration of the piston is

(s4)

Tm%grating equation (54), introducing the condition that
z varies about zero, and neglecting the change in sign yield

(66)

After both sides of equation (55) are divided by the out-
put amplitude at zero frequency, the equation relating the
amplitude ratio and the frequency k

A=(pS–pdA,
SMCL? (66)

In the log-log plot of amplitude ratio against freqmmcy
(@g. 1.2) an asymptote may therefore be considered to mist
having a slope of 2 decadea per decade. The break frequency
of the high-frequency asymptote is found from equation (66)
by setting A=l:

“’m (67)

The expression for the value of m mtiy be made iride-
pendent of the type of servomotor by relating w to the no-
load time cimstant and the dimensionlessquantity previously
deiined as the inertia index The inertia index is ddined
for the frequency response by replacing the term magnitude
of step S with the term amplitude of output sine wave at
zero frequency S’.

Rewriting equation (28) and introducing the symbol S“
in place of S give

——“
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FImma 12.-8umma~ of lfnear refatione for frequenoy response of
hydraufic servomotom with mechanical feedbaok.

Combining these two relations yields

“T=’I.LRZ (58)

Substituting equation (58) in equation (57) gives

2
m=~ , (59)

Tho break frequency of the high-frequency tiymptote ex-
pressed in cycles per second is

f2’&f (60)

The amplitude ratio may also be expressed in terms of
T and E’. - Substituting equation (58) in-equation (56) gives

‘= (’&WZ (61)

Cross-over frequency.-The intersection of the low- and
high-frequency asymptote defines the limit of the low.
fiequenc-y band and the start of the high-frequency band.
Fo~ f,>fl this intemection is found
plitude ratios as deiiued by equations

1 4
%=[E’WW2. .

from which
4

‘— T(E’)2
——

The cross-over frequency expressed

f3=&72

by equating the am-
(51) and (61):

(62)

in cycles per second is

(63)

For jz~l the cross-over frequency ocours at f~; hence

/
f3=f2

Correlation of frequency response and transient
response,—It has been shown that the derived attenuation
asymptote of the frequency response are functions of the
same parameters that govern the derived clmracteristic.sof
the transient rwponse. It has been shown further that the
analytical relation that governs the characteristics in the
low-frequency band is the same as the analytical relation
that governs the characteristics of the deceleration phase of
the transient response (Q. 5). It can also be shown that
the linear system used to approximate the acceleration phase
of the transient response attenuates along the same asymp-
tote as has been derived for the high-frequency band.

Equation (26) represses the dynamic equilibrium in the
acceleration phase of the response to a step input. Equa-
tion (26) rewritten for a sinusoidal input is

The solution

Substituting
(64) yields

P(E’)’
4

Z+ Tx+x=S’et”; (64)

to equation (64) is

$= Aei(ut+@ (65)

equation (65) and its derivatives in equation

The term Ae{ti is a vector quantity having
A and a phase angle q:

(66)

an amplitude

. (67)

(68)

32169S-SG26
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At high frequencies the relation of equation (67)
approache9 the asymptote

A= (E&’%2
(69)

Equation (69) is identical with equation (61). It is there-
fore shown that the linear system described by equation (64)
attenuates along the same asymptote as the linem system
described by equation (26).

Phase shift.-The correlation of the amplitude attenuation
with a linear first-order system in the Iow-frequenoy band
and with a linear secondaxkw system in the high-frequency
band provides a basis for the description of the phase shift
of the servomotor. The phase shift of linear systems can
be represented by straight lines on the coordinate of phase
shift against log frequency. The characteristic elope of the

‘P f thestraight line for a fit-order system is the slope ~ o

phase-shift-frequency rdation at 9=45°. Th6 character-
istic slope of the straight line for a second-order system is

the slope ~ of the phme-shift-frequen~ relation at p=900.

The orientation of these linw and the relations for the slopes
“are shorn in figure 12. The derivation of the relations
show-nin figure 12 is presented in the following paragraphs

Based on the correlation of the low-frequency-amplitude
attenuation with the no-load response, the phase shift is,
hm equation (50), ‘

p=–ti-l q’.

and, from equation (52), tbe break frequency in
frequency band is

&ll=—
;

the low-

Substituting equation (52) in equation (50) yields

~=—ti-l 1=—45°

. Di.ifer&tiating equation (50)’mith respect to a and s.6tting
dq

w=; ti~d the dope ~ at a=45°:

dp T—. —
dw 2 (70)

The’ s&aight line on the sami.logplot ma; be written

~=K loglo u (71)

Differentiating equation (71) with respect to u and solving
for the constant K give

K=2 ~adg
.

da (72)

‘p duatp=Substituting the valuw of ~ an 45° yields the

characteristic slope of the fit-order system on the semilog
plot

K,=l.15 (73)

The phaae shift in the low--frequency band may therefore
be represented by a straight line on the semilog plot having
a slope of 1.15 radians per decade (66“/decade) and passing

through the point a=+ q=45°.

Based on the correlation of the amplitude attenuation in
the high-frequency band with the acceleration phase of the
response to a step input, the phase shift in the high-frequency
band is characterized by the relation expressed in equation

‘w f equation (68) is found(68). The characteristic slope ~ o

by d.iilerentiating equation (68) and setting u equal to &

(q=90°): .
dp T(E~2
Z=7

(74)

After the substitution of equtition (74) and r.o=& in

equation (72), the characteristic slope of the second-order
system on the semilog plot is

, , , , 1 , x., , , I

I I I I
I NN“’l=Ela%E

I I I II II8
[ ~ HH&\.❑

Calculated
tkrwed stmight%rm

II I I

response appcmnwtbms J T E’-fi fz I-
n 123.5 0.0s51.44 If
A --–-– 19.70 .0s5 1.s2 u
0 —-A 27.03 .CW52.13 1.S7 1.73 1.’

Frequency, CPS

(a) Effect of load inertia J. Rotary servomot.or;, amplitude at zero
frequency, 10°; pr&ure differential, 125 podnda per square inoh.

FIGUEm 13.—Frequenuy rewonses of hydraulio eavomotma under
inertia load.
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(b) Effeot of amplitude 0’. Rotary aervomot.or; moment of inertia
of load, 5 pound inches per eeoond per second; pressure different
125 pounds per square inch.

I?IQVR?J13.—Continued. Frequenoy responses of hydraulio eervo-
motore under inertfa load.

It is a fundamental precept that in representing the re-
sponse of the servomotor in two kquency banda the rela-
tions used to approximate the r~onse shall yield equal am-
plitude ratios and equal phase shifts at the crosa+ver fre-
quency. The crossaver frequency has already been defined
for equal amplitude ratios. The phaae-ihift line in the low-
frequency band has been previously oriented. The phase-
shift line in the high-frequency band therefore intersects the
low-frequency phase-shift line at the cross-over frequency
and has a slope of 2.3E’ radians par decade (132° E’ decade).
It should be noted that the low-frequency phase-shift line is
limited at 900 and the high-frequency-band phase-shift line
is limited at 180°. In iigu.re 12 the cross-over tiequency is
shown to occur after the low-&quaucy phase-shiftiline has
reached the 90° limit. The orientation of the high-frequency
phase-shift line for other relative locations of tbe cross-over
frequency is shown in conjunction with the experimental
responses.

Experimental responses,—l?igure 13 shows the expti-
mentally and analytically determined effect on the frequency
response of the hydraulic servomotor of the paraznetem:
load inertia, input amplitude, and pressure. Examples are

;
I I I I I 1111 Pc
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~ 1+I I I I I I IIll I I I%J 1%11 \ I I 1

J
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5 o— 2s.5 8.6- . .=
“n --——— 78.5 5m8 1.73

E . —-— 17R=I 346 1.7?< m
J)ll , , , r , , I , I 1 1 1 , 1 1 1

I I I
,

z I I I I I IIll I
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, Calcuboted !!!1 I I I I 1 1 mlI\ \.
P Measuredstmighi-tirw

response apprcmmaticms S - T E’. fl< I

% o 0.79 0.0
== A —-— .49 .0

.-
Frequency, cps

(0) Effeot of pressure dhTemntkd (F’,-PJ. Straight-1ine servomotor;
load IMUM,1.08 pounds per eeaond per second per inoh; amplitude at
zero frequenoy, 0.65 inoh.

(d) Effect of amplitude S’. Straight-line servomotor; load rnaas,
1.08 pounds per second per wmcmd per inoh; pressure different@
28.5 pounds per square inoh.

-Fmum 13.—Concluded. Frequency reaponaes of hydraulia sorvo-
motors under inertii load.

presented for both the rdtary and str&ohtJine types of
motor.

In figure 13(a) is shown the effect of load inertia on the
amplitude attenuation and on the phase shift of Q rotary
servomotor. An increase in load inertia resulti in a reduc-
tion in the frequehcy at which the attenuation becomes
rapid. In the analytical exprw,ion developed in this paper
(summ@ed. in fig. 12) this effect is evident in the increased
value of E’ with increasing load inertia and the consequent
reduction in the values of f2 and fa.

The experimental and calculated frequency responses of
the same rotary servomotor at various input amplitudes are
shown in figure 13(b). The amplitudes given in the figure
correspond to the term # and consequently are half the total
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output stroke at zero tiequency. In the case of this particular
servomotor, this amplitude corresponds exactly to the ampli-
tude of the input sine -iva,ve.” The increase in input ampli-
tude is seen to have an effect simikm to that of increasing
load inertia. This effect is made evident in the analysis by
equation (57).

,The agreement between experimental and amd-jtical
responses for n straight-line servomotor is shown in figures
13(c) and (d). Phase shift could not be measured in this
installation. I?igure 13(c) shows the effect of the pressure
difference across the motor. Increased pressure results in
increasing the frequency at which the motor begti to
attenuate rapidIy. In the analytical expressions, the
increase in pressure results in a decrease in T and a conse-

quent increase in j,, j~, and .f~. The inertia index E’ is
, independent of the pressure difference and therefore the
effect of pressure on~~ and$ is not as ~eat v the effect onjl.
The effect of amplitude shown in figure 13(d) is similar to
that already shown in the case of the rotary servomotor in
figure 13(b).

In both amplitude attenuation and phase shift the agree-
ment between the measured response and the analytical
straightAine approximation is, in general, well tithin the
experimental accuracy. The slopes’ of the attenuation and
phase data clearly demonstrate the fh.t-order ,chsxacteristim
of the response in the low-frequency band and tbe second-
order characteristics of the response in the high-frequency
band. The transition from fit-order to second~rder
characteristics at the .calculated cross-over frequency is
quite pronounced. The v~ues of 2’ and E’ shown in figure
13 are based on a value of O of 95.1, on the dimensions of the
servomotors as given in appendix A, and on the conditions
stated on each plot. ~ figures 13(c) and (d), the pressure
differences given are not the actwl pressure di.fTerences
across the motor but are reduced values based on a pressure
necessary to overcome fiction in the load@ carriage. This

APPARATUS

reduction is discussed in appendix A. In all the other crLlcu-
lated results presented in this paper, no correction whatm-er
was applied k the measured pressure diilerence across t,he
motor.

“CONCLUD~GREMARKS

Application to analysis.-The dynamic relations presented
in this paper can be directly applied to the analysis of a
‘@ven servomotor. The dimensions of the servomotor and
the operating pressure difference across the motor determine
the no-load time constant T. -The inertia index E is then
determined from the load inertia and the magnitudo or
amplitude of the input disturbance. Whh these two con-
stants determined, the relations for the transient response,
the peak cyclinder pressure in the transient, and tho
frequency response can be applied.

The validi~ of the analysis has been demonstmtod by
means of recorded transient and frequency responses ob-
tained on two servomotors. In all cases the balcuhtecl
responses are in close agreement with the measured responses.

Application to design.-The optimum combination of
servomotor dimensions to meet specific dynamic requi.ro-
ments involves further discussion of physical considerations
that are beyond the scope of this paper. It is nevertholms
apparent that, based on this analysis, procedures can be
~tablished for the rational design of hydraulic servomo ~ors,
In genemd, the procedures will involve the inversion of the
analytical expressions in order that the dimension pmun-
eters (such as AP, R, and W) may be expressed in terms of
the analytical parameters T and 1?, and the establishnmnt of
means of specifying the desired response in terms of the
analytical parameters. The application of this onalysi$ to
the design of servomotors is given in reference 2.

LEWIS FLIGHTPROPULSIONLABORATORY,
NATIONALADVISORYCO~m~EB FORABRON~UTICB,

CLEVELAND,OHIO,-kfay 19, 1962.

APPENDIX A

AND tiERIMENTAL PROCEDURES

SERVOMOTOR

The two servomotors used in this invest&tion had the
following dimensions: I
Straight-1ineservomotor:

Piston are+ A% sq ti-------------------------------- 4.4
Ratio of valve travel to piston travel at fixed inputq R,inJR ().1062
Width of valve port, W, ti-------------------------- L 33

Rotary sa-vomotor:
Width of vane, h, ti--------------------------------- 2.000
Inner vane radius, ~, h---------------------------- O.760
Outer vane radius, & b------------------------------ 2267
RSQOof valve travel to vane shaft rotation at tixed inpu$ r,

ti.j~--------------------------------------- O.3125
Width of valve port, W, h---------------------------- O.2225

TRANSIENT RIBPONSE

Position recorder.—Input and output shaft positions were
recorded by means of diiect-writ@ oscillographs. The

,
DIMENSIONS

oscillogmphs were driven by amplifiers. The amplitim, in
turn, received their signal from potentiometers coupled to the
servomotor shafts. The frequency responso of the amplifier-
oscillograph combination was essentiallyflat over Qfrequency
range from Oto 80 cycles per second.

Pressme recorder.—Cylinder pressureswere also recorded
by means of direct-writiqg oscillographs. The pressure
pickups used were of the strain-gage type. Tho signal ,
developed across the strain-gage bridge was amplified by
suitable amp~era which, in turn, drove the oscillogmphs,
The frequ&cy response of this amplifier-oscillograph com-
bination was essentiallyflat over a frequency range from Oto
80 cycles per second. The natural frequency of the pressure
pickup w-as1000 cycles per second.

.
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Step-input apparatus,-In order ta introduce a step change
in rLmechanical system such as the hydraulic servomotor, it is
necessary to accelerate and decelerate a iinite mass (such as
the input shaft) at very high rates. The time constant of
the smvomotor to be tested was about 0.03 second. The very
high accelerations that would be required of the input
mechanism for the transient to be negligible did not appear
to be reasonably attainable in this case. It was therefore
decided to use n step input that is obtained by restmining the
output. This procedure should be made clear by figure 14.

As can be seen in the photograph, the output shaft is held

—-.—. .
k.

FIGURE 14.—Rotary hydraulic servomotor instrumental for recording
transient response to a step input.

in position by a w-iresuitably anchored. The wire used WQS

musk wire stressed to approximately 150,000 pounds per
square inch. With the output so restrained, the input lever
is advanced for the desired magnitude of step. The tran-
sient is then &iggered by cutting the highly stressed wire. -
In the transient runs, the output motion was recorded
directly. The input motion, which has no meaning in this
case, w-m not recorded. The start of the transient vras
recorded by placing the restraining wire in the signal circuit
of one recorder. A change occurred in the signal voltage
when the wire was parted. ‘

.

FIGUREI15.—R&wy hydraulio servomotor instr&ented for moording
respom-e to a einuaoidally varying input.

~.. .. _.—
7

m

L

[ I
1 . A 1

output Error
recorder

~
remrder

u
L5

Jl--
Volt s

FIGURE 17.—Instrumentation for determiningg frequenoy-reaporwe
characte’&tim of hydraulio servomotar. ~

FIGURE 16.-StraightAine hydraulio servomotor instrumented for
mOON@ rwponse to a sinusoidally varying input.
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of the load was varied by
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bolting
additional weights to the ends of the bar that ma-fastened
to the output shaft of the servomotor. For the no-load rune
o light-vreight mm was used in place of the bdr that is showm
in figure 14.

FREQUENCY-=PONSEAPPARA’rUS

Drive “ apparatus.-!lle rotary-servomotor setup for.
fkequency-responsemeasurement is shown in figure 15. b th
photograph of figure 15 the servomotor input shaft is on the
right-hand side. A rack and gear assembly is poupledto the
input shaft. The rack is connected to a variable-stioke
crank that is d@m by a variable-speed transm@ion. The
drive had a range horn “0.1to 20 cycles per second. ,

The straight-line-servomotor setup for frequency-response
measurements is shown in figure 16. The input lever is
linked directly to a tiariable-speed, variable-stroke drive.
The output potentiometer is coupled to the output shaft by
means of a rack and pinion sembly. The servomotor is
!oaded by means of -weightsthat are bolted to a sliding car-
riage. Input motion Was not measured in this apparatus.
The variable-speed drive had a range from 0.1 to 11 cycles
per second.

Output and phase-angle meaanrement.-Phase angle was
measured only in the case of the rotary servomotor. The
circuit diagram showing the method of connecting the po-
tentiometers to the recorder ampl.iks is shown in iigure 17.
By means of the arrangement shown, the output motion
and the error between the output and input shaft position
are recorded. In the diagram the potentiometers marked
input and output are the two that are visible in figure 15 and
are coupled directly to the input and ou~”ut shaft, respec-
tively. The balange potentiometer is uncoupled.

The output attenuation ratio is obtained directly from the
oscillograph traces. The phase angle is obtained by means
of the graphical construction sho~ ~ we 18- The fiput
amplitude is laid out to an arbitrary scale. With the use
of this scale, the outpufimplitude ratio is swung as an arc
from the starting point of the input vector. “ The error-
amplitude ratio, referred to amplitude at infinite frequency
(obtained by locking output), is swung as an arc from the
opposite end of the input vector. The triangle thus formed
yields the phase angle.

The particdar advantage of this procedure lies in the rela-
tively greatar accuracy with which the amplitude of a wave
can be measured compared with the determination of the
-exact point in the cycle at which the maximum height of the
wave occurs.

I Friction deter@nation.-In the llequency-response runs
made with the straight-line servomotor, the limitations im-
posed by the sinusoidal drive and pumping equipment re-
stricted the range of frequencies to a maximum of 11 cycles

I?u&m 18.—Di8gram for determination of phase angle from frequenoy-
responea data.

per second. In order I%obtain a signidcnnt range of ampli-
tude ratios below 11 cycles, it was necessary to make thes~
Funs at low- pressure differences acrosk the motor. The
pressure necessary to overcome friction in the servomotor
w-asapproximately 2 pounds per square inch and therefore
could be neglected in the calculations. The pressure nec-
esmry to overcome friction in the loading carriage was as
high as 22.5 pounds per square inch at maximum load. This
prexmre W= defined m the pressure necessary to maintain a
steady oscillation with a given load on the carriage. The
pressure was found to be substantially independent of the
frequency in the range of frequency up to 11 cycles per second.
The calculated asymptotes shown in figures 13(c) and (d) were
made with the friction pressure subtracted from the meas-
ured pressure difference mrose the motor.

The procedure previously outlined appliea only to figures
13(c) and (d). b all the other rune show-n, no correction
whatever -was applied k the measured pressure difference
across the motor.
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APPENDIX B

DERIVATION OF EQUATIONS FOR TRANSIENT RESpONSE ~ ~CH upS~EAM C~~ER pRESSuRE ~ ~ED AT
ABSOLUTE ZERO

In the following sections the formal mathematical operib
tions employed in the derivations of the expressions for the
peak cylinder pressure and for the position response are
presented.

PEAKCYLINDERPBESSURE

Integration of differential equation for limited pressure
phase (eq. (40)) .—The differential equation for the phase of
the transient in which the upstream cylinder pressure is
limited at rtbmlutezero is, horn equation (40),

()28 x
F s–z

2+2=0 (III)

The order of the equation maybe reduced by means of the
following general relation:

d(i) dz–( ) .@
5= dt % ‘x dz

($2)

With the substitution of equation (332) in equation 031),
the reduced equation is obtained:

Remranging terms yields

Integrating each termgives

2s
~ &+ln x=D

from which

[
=2s1.—

*=e m (s-r)1

(J33)

(B4)

With uea made of the symbols deiined in @e 7, the initial
conditions are

t=tg

X=zg

i=tz

Introducing these values in equation @3) yields

2s 1
—+ln x,D== (S–Q) (B5)

Relation between ratio of peak pressure to supply pressure
and inertia index,-From equation (43),

~rom equation (42) the value of z when z is at the mmdxmun
value is given by the following relation:

(B7)

Whth the sub&titutionof equation (B7) into equation @4),
an expression is obtained’ for the piston veloci~ when the
deceleration is at the m&mum value:

*==e(. D-l) @8)

Substituting equation (B8) in equation (B6) yields

@9)

Based on the consideration that PI equals zero, the relation
between the downstream cylinder pressure Pa and the de-
celeration is

A~2=M5 @lo)

Combining equations (B9) and (B1O) and ditiding by P, Yield

(3311)

Baied on the consideration that PI and l?~ are zero, the
following relation is derived from equation (27):

4MS
‘S-ETAP (3312)

Substitut-~ equation (B12) in the right-hand side of equa-
tion (B1l) gives

P%- ETWD
x= m’ (B13)

Inserting the numerical value of& gives

@14)

The exponant D may be expressed in terms of the relations
that have been derived for w and& From equation (37),

(B15)

and from equation (38),

*,=’se-(+9TK
sid (tan-l K) (B16)

By use of the trigonometric identity

it ean be shown that

‘h‘W-l‘=&r=
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Furt&.rmore,

~=E
Hence,

.&l (tan-l K)=g
and equation (B16) may be written

,&-(%3
X3=

TE

Substituting equation (B17) in equation (1315)yields

(7317)

&8)

Substituting equations (1317) and (B18) in equation 035)
give9

Let

Then -

D= F(E)+ln ~

and
ez~= 4Pe IWml

PP

Substituting equation (1320)in equation

Pa.. lPe ~ml
r’ 14.77

@20

(1314) give9

:
(-B21)

It can be seen from figure 7 that equation (1321)will yield
real values only if the following relation exists:

Because ~ and #me both functions solely of E, the value

~=~ represents the limiting value of E for real
‘f E ‘hen s s

vahle9 of P-

From equa’tion @7),

From equation @18)

(B22)

‘@23)

Equating equations (B7) and (B18) g@w

E=fie(-~~ @24)
The value of E that satisfies this relation is 2.38.

Because ~ approaches unity more rapidly than ~ as E

P% *=
increases, ~ as defined by equation (B21) haa real valuea

for ~2.38. The validity of this proof is demon&rated
by the evaluation of equation (B21) ‘at E=2.38. Inserting
this value of E in equation (B21) yields

POSITIONRSSPONSE

Determination of initial coordinates of

equation (37),

~=1–~~
*S

From equation (38),

:= 2e-(-7)

ET

phase II,-From

(B26)

(B26)

Substituting equation (B26) in equation @25) yields
,,

(B27)

The veloci~ is constant from the point # to the point ~;

hence,

[1?–2
h=tl+ - @29)

;

Integration of differential equation. for phase II,-The
tit step in this integration is preiented in the previous

I section in which equation @l) is integrated to A (eq, (B4)).
Let

% (SIX)=*

du=$ (s–z)-’ dz

2s
‘X=z%’ ‘u

Making these substitutions in equation
i.ugterms yield

()
2Se-D e“

dt= ~ ~ du

J~du=lnu
u= –;+n~:% (B31)

(EM) and rearrang-

(B30)

The integrated equatio~ is then

‘=(%’)(’”’%Z%%I+H)’32)
The constant H is evaluated by introducing the initial
conditions

t=ta

,
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Hence, \

H=k–~ ~-D
{

In z–$+”$~&
}

where
2s 1

‘=2F (S–X2) ‘

(f333)

Determination of initial conditions for phase III (fig. 7).—
As defied in figure 7, the coordinates of the junction of
phases II and III are

X=X3

t=t3

As further defined, the following conditions exist at t=b:

PI=P2=0

APP= –P,

AP,, f= AP,,&=P,
Hence,

APPs
53=———

u
By equation (7)

X3 OBW
‘~~(S–xJ

Substituting equation (36) yields

(B34)

(B35)

From equation (B4) a second velooity-position
obtained:

J’%%%)—
Combining equations @335) and (B36) yields

393

relation is

(B36)
.

(B37) ‘

The constant II is evaluated by means of equation (B19)
smda is determined graphically horn equation @37). The
coordinate Gis evaluated by means of% and equation @32).

Equation for phase III of response,-Phase III is identi~
with the deceleration phase of @e 3. Therefore, follow-
ing the derivation of equation (34), the equation of the
response in phase III is

() -(a—=—:1 l–? e (B38)
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